In der heutigen datengetriebenen Geschäftswelt ist die Fähigkeit, präzise Vorhersagen zu treffen, von unschätzbarem Wert. Eine Methode, die in den letzten Jahren zunehmend an Bedeutung gewonnen hat, ist das Konzept des Forecast Value Added (FVA). Dieser innovative Ansatz verbessert nicht nur die Genauigkeit von Prognosen erheblich, sondern ermöglicht Unternehmen gleichzeitig, ihre Ressourcen effizienter zu nutzen. In diesem ausführlichen Artikel tauchen wir tiefer in die Welt des Forecast Value Added ein und zeigen auf, wie es Unternehmen revolutionieren kann.
Was ist Forecast Value Added (FVA) und warum ist es für die Prognosegenauigkeit entscheidend?

Forecast Value Added ist ein fortschrittlicher Prozess, der die Prognosegenauigkeit erhöht, indem er den Wert jedes einzelnen Schritts im Prognoseprozess quantifiziert. Dabei geht es um weit mehr als nur um Zahlen. Vielmehr hilft diese Methode Unternehmen dabei, zu erkennen, welche Aktivitäten die Prognosequalität verbessern und welche sie sogar verschlechtern könnten.
Warum ist das Forecast Value Added Konzept so wichtig für präzise Geschäftsprognosen?
1. Improved forecasting accuracy: By identifying and promoting valuable contributions, the overall accuracy of forecasts can be significantly increased. This leads to more informed decisions and better strategic planning.
2. Resource optimization: FVA helps companies to focus their often limited resources on activities that have been proven to improve forecast quality. This leads to a more efficient use of time, personnel and financial resources.
3. Cross-departmental collaboration: The FVA process promotes collaboration between different departments such as sales, marketing and finance. This creates a holistic understanding of the forecasting process throughout the company.
4. Transparency and accountability: By clearly assigning value to specific process steps, FVA creates transparency and makes it possible to clearly define responsibilities.
5. Continuous improvement: FVA establishes a framework for continuous improvement by promoting regular reviews and adjustments to the forecasting process.
Wie funktioniert die Forecast Value Added Analyse in der Praxis?
Der FVA-Prozess besteht typischerweise aus den folgenden Schritten:
1. Creation of a baseline forecast: This is often a simple statistical forecast that serves as a starting point.
2. Collection of input from various teams: contributions are obtained from various departments such as sales, marketing and product management.
3. Messung der Prognosegenauigkeit nach jedem Schritt: Jede Modifikation oder jeder neue Input wird direkt auf seine Genauigkeit hin überprüft.
4. Identifying the steps that add or subtract value: Based on the measurements, it is analysed which steps improve or worsen the forecast.
5. Optimization of the process: steps that do not add value are eliminated or modified, while valuable contributions are strengthened.
Metrics for the evaluation of FVA
Various advanced metrics are used to precisely measure the effectiveness of FVA:
- MFE (Mean Forecast Error): This metric shows whether a forecast is systematically prone to over- or underestimation. An MFE close to zero indicates a balanced forecast.
- MAD (Mean Absolute Deviation): Measures the average absolute deviation of the forecast from the actual value. The lower the MAD, the more accurate the forecast.
- MAPE (Mean Absolute Percentage Error): Indicates the average percentage error. This metric is particularly useful for comparing forecasts across different orders of magnitude.
- RMSE (Root Mean Square Error): This metric penalizes larger errors more heavily and is particularly useful when large deviations are especially problematic.
Implementation of FVA in your company
The successful implementation of FVA requires a structured approach:
1. Staff training: Ensure that all teams involved fully understand the concept and importance of FVA. This can include workshops, seminars and practical exercises.
2. Establish a structured process: Develop a clear, documented process for creating and reviewing forecasts. This should be flexible enough to be adapted to different departments and product lines.
3. Use of technology: Use appropriate software tools to support and automate the FVA process. This can range from specialized FVA software solutions to customized business intelligence tools.
4. Regular review: analyze the results at fixed intervals and adjust the process if necessary. This should be an integral part of the forecasting cycle.
5. Promote a culture of data orientation: encourage all stakeholders to make decisions based on data rather than intuition.
6. Integration into existing processes: FVA should not be seen as an isolated initiative, but should be integrated into existing planning and forecasting processes.
Challenges and solutions
Companies can face various challenges when implementing FVA:
- Resistance to change: Employees may be reluctant to change established processes. Clear communication of the benefits and a gradual introduction are helpful here.
- Data quality and availability: FVA requires reliable data. Investments in data management and infrastructure may be necessary.
- Complexity of the process: FVA can seem complex at first. A gradual introduction and continuous training can help to overcome this hurdle.
Future prospects for FVA
Die Zukunft des Forecast Value Added sieht vielversprechend aus. Durch die zunehmende Verfügbarkeit von Big Data und KI-gestützten Analysetools wird der Prozess weiter verbessert. Maschinelles Lernen wird voraussichtlich eine noch größere Rolle spielen, indem es Prognosen automatisiert und optimiert.
Fazit: Warum Forecast Value Added für datengesteuerte Unternehmen unverzichtbar ist
Der Forecast Value Added ist weit mehr als nur ein Trend - er ist ein leistungsfähiges Instrument zur Verbesserung der Prognosegenauigkeit und zur Optimierung der Ressourcen. Durch die systematische Bewertung jedes Schritts im Prognoseprozess können Unternehmen ihre Prognosefähigkeiten kontinuierlich verbessern und fundierte Entscheidungen treffen.
By integrating FVA into your forecasting processes, you can not only significantly increase the accuracy of your forecasts, but also promote collaboration between different departments and ultimately improve the efficiency and competitiveness of your entire organisation. In a world characterised by uncertainty and rapid change, FVA provides a structured approach to create clarity and make informed decisions.
The implementation of FVA is not a one-off process, but a continuous process of improvement and adaptation. Companies that rise to this challenge and successfully integrate FVA into their processes will be better equipped to overcome future challenges and capitalise on opportunities.
Für weitere Informationen kontaktieren Sie uns gerne unter contact@circly.at oder buchen Sie einen Termin.
Further sources: https://www.sciencedirect.com/science/article/pii/S0169207024000736