Bedarfsprognosenmethode Maschinelles Lernen Predictive Analytics ist der Schlüssel zur Optimierung der Nachfrageplanung in einem sich schnell verändernden Markt. Unternehmen müssen auf diese Technologien setzen, da traditionelle Methoden oft nicht ausreichen, um plötzliche Veränderungen im Kaufverhalten der Verbraucher zu erfassen – sei es durch Wetterbedingungen, Social-Media-Trends oder globale Ereignisse. Laut dem IT-Forschungsunternehmen Gartner gehört die Nachfragevolatilität zu den größten Herausforderungen für Führungskräfte, weshalb präzise Prognosen wichtiger denn je sind.

Bedarfsprognosenmethode Maschinelles Lernen Predictive Analytics ermöglicht es Unternehmen, riesige Mengen an historischen und aktuellen Daten zu analysieren und genauere Nachfrageprognosen zu erstellen. Diese Technologien helfen dabei, Bestände zu optimieren, Marktveränderungen frühzeitig zu erkennen und fundierte Geschäftsentscheidungen zu treffen. In diesem Artikel zeigen wir, wie Bedarfsprognosenmethode Maschinelles Lernen Predictive Analytics die Nachfrageplanung revolutioniert und vergleichen traditionelle statistische Modelle mit modernen, KI-gestützten Ansätzen.

Der Stellenwert von Bedarfsprognosenmethode Maschinelles Lernen Predictive Analytics in der Angebotsplanung

Wie Bedarfsprognosenmethode Maschinelles Lernen Predictive Analytics die Effizienz steigert: Grundlagen und Methoden

Demand forecasting is the process of estimating the likely future demand for a product or service. The phrase is often used used interchangeably with demand planning, but the latter is a more broad process that begins with, but is not limited to, forecasting.

According to the Institute of Business Forecasting and Planning (IBF), demand planning "uses forecasts and experience to estimate demand for various items at different points in the supply chain." In addition to estimates, demand planners participate in inventory optimization, ensuring the availability of needed products and monitoring the gap between forecasts and actual sales.

Demand planning is the launch pad for many other activities, such as warehousing, distribution, price forecasting, and especially supply planning, which aims to meet demand and requires data on what customers are likely to want.

Here we return to forecasting. Being as close to reality as possible is key to improving efficiency throughout the supply chain. But how do you achieve the highest possible accuracy? The answer depends on the type of company, the available resources and the objectives.

So let's compare the available options: traditional statistical forecasting, machine learning algorithms, predictive analytics that combines both approaches, and demand sensing as a supporting tool.

Traditionelle statistische Prognosen vs. Bedarfsprognosenmethode Maschinelles Lernen Predictive Analytics

Traditional statistical methods (TSM) have been around for a long time and are still an integral part of forecasting processes in production and retail.

The only difference to earlier calculations is that they are now performed automatically by software solutions. For example, time series forecasts for sales and trends can be created in Excel.

To forecast the future, statistics uses data from the past. This is why statistical forecasts are often referred to as "historical analysis." Traditional forecasts are still the most popular method of predicting sales. Typically, demand planning solutions based on statistical techniques can be executed in Excel and existing enterprise resource planning (ERP) systems seamlessly, without the need for additional technical expertise. The most advanced systems may consider seasonality and market trends, as well as apply numerous methods to fine-tune results.

It should be noted that an important requirement for statistical forecast accuracy is the stability of the market. The analysis assumes that history repeats itself: situations that occurred two or three years ago will repeat themselves.

Demand patterns that can be measured well statistically:

Bedarfsprognosen Maschinelles Lernen Predictive Analytics – Konstante Nachfragekurve mit stabiler Trendlinie von Circly GmbH.

Constant demand curve

Bedarfsprognosen Maschinelles Lernen Predictive Analytics – Saisonale Nachfragekurve mit periodischen Schwankungen von Circly GmbH.

Seasonal demand pattern

Bedarfsprognosen Maschinelles Lernen Predictive Analytics – Trendbasierte Nachfragekurve mit ansteigender Trendlinie von Circly GmbH.

Trendy demand pattern

However, this is far from the reality. Statistical methods fail to predict illogical changes in customer preferences or to predict when market saturation will happen.

In summary, automated statistical forecasting provides a sufficient level of accuracy for:

    1. Medium to long-term planning,

    2. well-established products that have a stable demand, and

    3. forecast of total demand

    4. new product launches.

      Traditional Forecasts Machine Learning Forecasts Circly's AI Forcast
    How many variables and data sources can be factored in? Adding additional variables and sources requires significant effort. Multiple variables & sources can be easily integrated thanks to the high level of automation. A variety of variables and provided data can be easily integrated.
    Extent of manual work: High Low Low
    Amount of data required: Low Large Medium to Large
    Maintenance effort: Low High Low
    Technology requirements: Low High Low to Medium
    Best fit: Long term planning
    Established products
    Stable demand
    Medium term planning
    New products
    Volatile demand scenarios
    Medium & short term planning
    Changing factors
    Existing processes

    Do you have questions about possible areas of use?

    Haben Sie Fragen zur Umsetzung in Ihrem Unternehmen? Contact us für eine unverbindliche Beratung!

    4. not suitable for sales planning of individual stock-keeping units (SKUs).

    So, does it possibly make sense to invest in more sophisticated technologies, such as machine learning or artificial intelligence, after all?

    Maschinelles Lernen für die Bedarfsplanung: Erweiterte Genauigkeit durch komplexe Datenanalyse

    In der heutigen schnelllebigen Welt sind präzise Bedarfsprognosen entscheidend für Unternehmen. Einerseits ermöglichen steigende Rechenleistungen eine bessere Datenanalyse, andererseits wächst die Nachfragevolatilität stetig. Daher setzen immer mehr Unternehmen auf maschinelles Lernen (ML), um ihre Prognosen zu verbessern.

    Building on the statistical models already presented, machine learning leverages additional internal and external data sources to make more accurate, data-driven predictions. So-called "ML engines" can work with both structured and unstructured data, such as past sales reports (historical data), marketing campaigns, macroeconomic indicators, social media signals (retweets, shares, etc), weather forecasts and more.

    Automatisierte Algorithmen für präzisere Bedarfsprognosen

    But the use of machine learning is worthwhile. It applies automated and complex mathematical algorithms to recognize a wide variety of patterns, detect demand signals, and identify complicated relationships in large data sets without intervention.

    Intelligent systems not only analyze massive amounts of data, but continuously retrain models and adapt to changing market conditions to compensate for volatility. These capabilities enable ML-based software to produce more accurate and reliable forecasts in complex scenarios.

    As a result, it's no surprise that companies that have added machine learning to their existing systems have reported a 5 to 15 percent increase in forecast accuracy (up to 85 and even 95 percent accuracy). In addition, the efficiency of the deploying company was increased due to the elimination of time-consuming manual adjustments and recalibrations.

    To reap the benefits of machine learning, sufficient computing power and large volumes of high-quality data are required. Otherwise, the system will not be able to learn and generate valuable predictions. Furthermore, you should also consider the added complexity in terms of maintaining the software and interpreting the results. While ML models reach conclusions without human intervention, an expert must determine which factors (called features) are fed into the model, which of them have the greatest impact on predictive power, and why the model generates a particular prediction.

    Fazit: Wann lohnt sich der Einsatz von KI in der Bedarfsprognose?

    Zusammenfassend kann gesagt werden, dass maschinelles Lernen eine wertvolle Lösung für Unternehmen ist. Jedoch müssen die Kosten für Infrastruktur und Personal berücksichtigt werden. Falls sich der Eigenaufwand als zu hoch erweist, kann ein Technologiepartner wie Circly helfen.

    Companies like Circly not only take care of the required infrastructure, creation of models and maintenance, but also constantly optimize the models to achieve the best results.

    Here's an overview of when machine learning definitely works better than traditional statistics:

    1. Short to medium-term planning,

    2. volatile demand patterns,

    3. rapidly changing conditions & trends,

    4. new product launches.

      Traditional Forecasts Machine Learning Forecasts Circly's AI Forcast
    How many variables and data sources can be factored in? Adding additional variables and sources requires significant effort. Multiple variables & sources can be easily integrated thanks to the high level of automation. A variety of variables and provided data can be easily integrated.
    Extent of manual work: High Low Low
    Amount of data required: Low Large Medium to Large
    Maintenance effort: Low High Low
    Technology requirements: Low High Low to Medium
    Best fit: Long term planning
    Established products
    Stable demand
    Medium term planning
    New products
    Volatile demand scenarios
    Medium & short term planning
    Changing factors
    Existing processes

    Do you have questions about possible areas of use?

    Haben Sie Fragen zur Umsetzung in Ihrem Unternehmen? Contact us für eine unverbindliche Beratung!

    Further sources: https://ieeexplore.ieee.org/abstract/document/10590108

    en_USEN